Regularized estimation of Hammerstein systems using a decomposition-based iterative instrumental variable method

نویسندگان

  • Vikram SAINI
  • Lillie DEWAN
چکیده

This paper presents a two-step instrumental variable (IV) method to obtain the regularized and consistent parameter estimates of the Hammerstein ARMAX model based on the bilinear parameterized form. The two-step identification method consists of estimating the bilinear parameters in the first step, followed by parameter reduction in the second step. An iterative identification method is proposed, based on the idea of separating the bilinear form in the two separable forms with partial parameters and solving the decomposed model forms iteratively. The IV-based estimation is integrated into the formulated decomposed structure by introducing the instruments constructed from the estimated auxiliary model outputs. It is shown that in a stochastic environment the proposed IV method produces consistent estimates in the presence of correlated noise disturbances. The validity of the proposed algorithm is verified with the help of extensive simulations using a Monte Carlo study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed-loop Identification of Hammerstein Systems Using Iterative Instrumental Variables

A feedback connection of a Hammerstein system and a linear controller provides a good approach to modeling systems with actuator nonlinearity or input saturation during closed-loop experiments. This paper discusses closed-loop identification of Hammerstein systems where both input and output signals are correlated with noise, and time domain signals are related via a nonlinear map. The static n...

متن کامل

An Iterative Method for Hammerstein–wiener Systems Parameter Identification

The paper deals with parameter identification of nonlinear dynamic systems using Hammerstein-Wiener models. Multiple application of a decomposition technique provides special expressions for the model description that are linear in parameters. This allows iterative estimation of all model parameters based on the measured input/output data and estimates of internal variables. The proposed algori...

متن کامل

Parameter estimation of the fractional-order Hammerstein–Wiener model using simplified refined instrumental variable fractional-order continuous time

This study proposes a direct parameter estimation approach from observed input–output data of a stochastic singleinput–single-output fractional-order continuous-time Hammerstein–Wiener model by extending a well known iterative simplified refined instrumental variable method. The method is an extension of the simplified refined instrumental variable method developed for the linear fractional-ord...

متن کامل

A new iteration method for solving a class of Hammerstein type integral equations system

In this work, a new iterative method is proposed for obtaining the approximate solution of a class of Hammerstein type Integral Equations System. The main structure of this method is based on the Richardson iterative method for solving an algebraic linear system of equations. Some conditions for existence and unique solution of this type equations are imposed. Convergence analysis and error bou...

متن کامل

Identiication of Multivariable Hammerstein Systems Using Rational Orthonormal Bases

In this paper, a non iterative algorithm for the simultaneous identiication of the linear and nonlinear parts of multivariable Hammerstein systems is presented. The proposed algorithm is numerically robust, since it is based only on least squares estimation and singular value decomposition. Under weak assumptions on the persistency of excitation of the inputs, the algorithm provides consistent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017